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The nonlinear dynamics of optical solitons with spatio-temporal dispersion, nonlinear dispersion and inter-modal dispersion 
have been investigated. The well-posed nonlinear Schrödinger equation is solved analytically suing the complex envelope 
function ansatz. The combined solitons are obtained. Finally, the effects of nonlinear dispersion as well as spatio-temporal 
dispersion, on the combined solitons, are analyzed.  
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1. Introduction 
 

Soliton theory was developed rapidly during the 

past few decades. In nonlinear optics, the study of 

optical solitons in birefringent fibers, metamaterials, 

hollow-core photonic crystal fibers (HC-PCFs) and other 

forms of optical waveguides has recently attracted 

widespread interest [1-8].  

The dynamics for the propagation of optical solitons 

through optical fibers for trans-continental and trans-

oceanic distances is modeled by the well-known 

nonlinear Schrödinger equation (NLSE) [1-18]. 

However, recent studies show that this model is ill-posed 

[19, 20]. To Make the NLSE well-posed, one should to 

revisit the model, and then an additional term that is the 

spatio-temporal dispersion (STD) should be taken into 

consideration [19]. Therefore, under investigation in this 

paper is the NLSE with STD. In the presence of group 

velocity dispersion (GVD), self-phase modulation 

(SPM), detuning, nonlinear dispersion (ND), inter-modal 

dispersion (IMD) and third order dispersion (TOD), the 

governing equation is given by 
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In Eq. (1), ),( txq  represents the normalized 

electric-field envelope that is the function of longitudinal 

coordinate x  and time coordinate t . Here a , c , d ,  , 

 , and   are related to the GVD, SPM, detuning, ND, 

IMD and TOD coefficients respectively, while b  

represents the STD coefficient.  

In order to investigate the nonlinear dynamics of optical 

solitons with STD, the first and most important task for us is 

to construct analytical solutions to Eq. (1), particularly the 

solitons. Optical solitons including the dark and bright 

solitons, which are non-diffracting localized electromagnetic 

waves that maintain their shapes in the long distance 

transmission, have important applications in tele-

communication and ultrafast signal routing systems [21, 22].  

 

 

2. Combined solitons to Eq. (1) 
 
First we introduce the following complex envelope 

function ansatz that is the combination of single dark and 

single bright solitons [21, 23-25]:  
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where , p , and   can be the real or complex constants 

that are the dark soliton amplitude, bright soliton amplitude 

and soliton greyness respectively, while B  represents the 

soliton width, and v  represents the soliton speed. It is 

needed to note that, when one takes 0  ( 0p ), then 

Eq. (2) gives the single dark (single bright) soliton with a 

grayness.  

Then the amplitude ),( txq  is given by 
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Now inserting Eq. (2) into Eq. (1), then utilizing the 

homogeneous balance method, i.e. equating the 

coefficients of each independent term of 

  tanhsech  ( 5,4,3,2,1,0 , 1,0 ) 

equal to zero, one get  
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Comparing Eq. (7) with Eq. (11), one obtains 

 

p                                   (13) 

 
Using Eqs. (8) and (12), or using Eqs. (6) and (10), 

one must have 
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which means there is no TOD. Then Eqs. (4)-(12) reduce 

to 
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Solving those equations above, one get 
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Upon equating the two values of the soliton velocity v  

from Eqs. (20) and (21), one obtains the constraint condition 
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Hence, finally the combined solitons to Eq. (1) are 

obtained that are given by Eq. (2). The relation for dark 

soliton amplitude and bright soliton amplitude is given by 

Eq. (13), while the soliton width is given by Eq. (19), and 

the soliton speed is given by Eq. (20) or Eq. (21). 

Additionally the corresponding existence conditions are 

given by Eqs. (15) and (22).  

 

 
3. Results and discussion 
 
In the previous section, the complex envelope function 

ansatz is applied to extract the combined solitons to Eq. (1). 

This section is going to investigate the influence of ND and 

STD on the properties of the combined solitons. The 

presented results are useful for describing the propagation of 

optical solitons through optical fibers with ND and STD.  

In the rest of this section, without loss of generality, we 

take the p  as an example to illustrate. Then Form Eq. 

(3), one get the amplitude  
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It should be noted that the Eq. (30) represents a bright 

soliton if 0 , and a dark soliton if 0 . This 

feature shows that the combined bright-dark solitons can 

propagate simultaneously.  

Now, we are going to analyze the effect of ND and STD 

on the solitons. By choosing the appropriate parameters in 

Eq. (30), the bright and dark solitons are  formed as shown 

in Fig. 1. Changing the values of   and b  can just adjust 

the soliton width as shown in Figs. 2 and 3. This means that 

we can control the soliton width by choosing the parameter 

values of the ND and STD.  
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Fig. 1. (a) Evolution of the bright soliton. The parameter values are 1 , 1 , 5.0c , 1a , 5.0 , and 

25.1b . (b) Evolution of the dark soliton. The parameter values are same as in (a) except for 1  and 5.0c . 

 

 

Fig. 2. Evolution of the bright soliton at x=0 on (a) different nonlinear dispersion with the same values as those given Fig. 1(a), 

 but with 1b . (b) different spatio-temporal dispersion with the same values as those given Fig. 1(a). 

 

 

Fig. 3.  Evolution of the dark soliton at x=0 on (a) different nonlinear dispersion with the same values as those given Fig. 1(b),  

but with 1b . (b) different spatio-temporal dispersion with the same values as those given Fig. 1(b). 
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4. Conclusions 

 

In this work the combined solitons in an optical 

fiber with detuning, ND, IMD as well as TOD are 

obtained along with necessary constraint conditions. The 

well-posed dynamical model that is studied is the NLSE 

with STD, i.e. Eq. (1). The tool of integrability that is 

used is the complex envelope function ansatz. We 

investigate the influence of ND and STD on the 

properties of the combined solitons. The results show 

that we can control the soliton width by choosing the 

parameter values of the ND and STD. Later, we will 

continue to study the combined solitons in other models 

arising in nonlinear optics and Bose–Einstein 

condensates.  

 

 

Acknowledgement 

 

The work of the second author was supported by the 

Scientific Research Fund of Hubei Provincial Education 

Department [grant number B2013193].  

 

References 
 

  [1] M. Mirzazadeh, M. Eslami, B. Vajargah, A.  

        Biswas, Optik 125, 4246 (2014).  

  [2] Q. Zhou, D. Z. Yao, F. Chen, W.W. Li, J. Mod.  

        Opt. 60, 854 (2013).  

  [3] S. C. Wen, Y. W. Wang, W. H. Su, Y. Xiang, X.  

        Fu, D. Fan, Phys. Rev. E 73, 036617 (2006).  

  [4] R. G. Li, R. C. Yang, Z. Y. Xu, Phys. Rev. E 82,  

        046603 (2010).  

  [5] A. Biswas, K. R. Khan, A. Rahman, A. Yildirim, T.  

        Hayat, O. M. Aldossary, J. Optoelectron. Adv.  

        Mater. 14, 571 (2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  [6] W. J. Liu, H. N. Han, L. Zhang, R. Wang, Z. Y.  

        Wei, M. Lei, Laser Phys. Lett. 11, 045402 (2014).  

  [7] Q. Zhou, J. Mod. Opt. 61, 500 (2014).   

  [8] Q. Zhou, D. Z. Yao, S. J. Ding, Y. F. Zhang, F.  

        Chen, F. Chen, X. N. Liu, Optik 124, 5683 (2013).  

  [9] B. Ahmed, A. Biswas, Proc. Romanian Acad. A 14,   

        111 (2013).   

[10] Q. Zhou, Optik 125, 3142 (2014).  

[11] Q. Zhou, Optik 125, 5432 (2014). 

[12] A. Biswas, A. Yildirim, T. Hayat, O. M. Aldossary, 

        R. Sassaman, Proc. Romanian Acad. A 13, 32  

         (2012).  

[13] W. J. Liu, B. Tian, M. Lei, Appl. Math. Lett. 30, 28  

        (2014).  

[14] Q. Zhou, D. Z. Yao, F. Chen, J. Mod. Opt. 60, 1652  

        (2013).  

[15] Q. Zhou, Q. Zhu, A. H. Bhrawy, L. Moraru, A.  

        Biswas, Optoelectron. Adv. Mater. – Rapid Comm. 

        8, 800 (2014).  

[16] H. Kumar, F. Chandb, Opt. Laser Technol. 54, 265  

        (2013).  

[17] Q. Zhou, D. Z. Yao, Q. Q. Xu, X. N. Liu, Optik 124,  

        2368 (2013).  

[18] Q. Zhou, D. Z. Yao, Z. H. Cui, J. Mod. Opt. 59, 57  

        (2012).  

[19] M. Savescu, S. Johnson, A. H. Kara, S. H. Crutcher, R.  

        Kohl, A. Biswas, J. Electromagn. Waves Appl. 28, 242  

        (2014).  

[20] M. Savescu, E. M. Hilal, A. A. Alshaery, A. H.  

        Bhrawy, L. Moraru, A. Biswas, J. Optoelectron. Adv.  

        Mater. 16, 619 (2014).  

[21] Z. H. Li, L. Li, H. P. Tian, G. S. Zhou, Phys. Rev. Lett.  

        84, 4096 (2000).  

[22] Q. Zhou, D. Z. Yao, X. N. Liu, F. Chen, S. J. Ding, Y.  

        F. Zhang, F. Chen, Opt. Laser Technol. 51, 32 (2013).   

[23] A. K. Sarma, Commun. Nonlinear Sci. Numer. Simulat.  

        14, 3215 (2009).  

[24] H. Triki, F. Azzouzi, P. Grelu, Opt. Commun. 309, 71  

         (2013).  

[25] F. Azzouzi, H. Triki, K. Mezghiche, A. El Akrmi,  

        Chaos, Solitons and Fractals 39, 1304 (2009).  

 

 

 
 

 

____________________ 
*Corresponding author: biswas.anjan@gmail.com 

 


